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Knowledge acquisition is governed by striatal
prediction errors
Alex Pine1,2, Noa Sadeh2, Aya Ben-Yakov2,3, Yadin Dudai2 & Avi Mendelsohn 1,4

Discrepancies between expectations and outcomes, or prediction errors, are central to

trial-and-error learning based on reward and punishment, and their neurobiological basis is

well characterized. It is not known, however, whether the same principles apply to declarative

memory systems, such as those supporting semantic learning. Here, we demonstrate with

fMRI that the brain parametrically encodes the degree to which new factual information

violates expectations based on prior knowledge and beliefs—most prominently in the ventral

striatum, and cortical regions supporting declarative memory encoding. These semantic

prediction errors determine the extent to which information is incorporated into long-term

memory, such that learning is superior when incoming information counters strong incorrect

recollections, thereby eliciting large prediction errors. Paradoxically, by the same account,

strong accurate recollections are more amenable to being supplanted by

misinformation, engendering false memories. These findings highlight a commonality in brain

mechanisms and computational rules that govern declarative and nondeclarative learning,

traditionally deemed dissociable.
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The brain is remarkably adept at learning from past
experiences to make predictions about future states of the
world. Computationally, predictions can be optimized by

the calculation of an error term associated with their accuracy in
light of new information—that is, a mismatch between expecta-
tion and reality. These prediction errors (PEs) are used to update
the brain’s beliefs and models of the world, in order to engender
superior future predictions and minimize the error term1–3. This
principle has been most successfully demonstrated in reinforce-
ment learning, which concerns the acquisition, and updating, of
action– or stimulus–outcome associations through cumulative
experiences. Learning of this nature, in the face of reward and
punishment, has been shown to accord with normative compu-
tational models, such as the Rescorla–Wagner model of Pavlovian
conditioning4. Axiomatic to these models is the generation of
outcome-based PEs that update ensuing expectations in propor-
tion to their magnitude. They have also been well documented in
the brain5,6, where it has been posited that the phasic activity of
dopaminergic neurons in the ventral tegmental area (VTA)
encodes PEs for reward, firing in response to unpredicted reward
(positive PE) and pausing in response to unexpected omission of
reward (negative PE)7. Numerous functional magnetic resonance
imaging (fMRI) studies have identified hemodynamic activity
correlating with reward PEs, particularly in the ventral striatum
(VS), a primary efferent target of VTA neurons8–11.

Remarkably, despite the acclaim of this computational account,
it is unknown whether the same principles apply to the learning of
facts (semantic knowledge) and events (episodic memory) which
constitute declarative memory. These memories—unlike those
pertaining to nondeclarative forms of learning, such as reinfor-
cement learning, skill learning, and other acquired behaviors—
enable conscious retrieval of personal experience and knowledge
acquired throughout one’s lifetime12, and are traditionally viewed
as being neurobiologically dissociable from nondeclarative mem-
ories13–15. Indeed, it is a commonly held view that a key factor in
the acquisition of knowledge is the number of exposures to
information (repetitions), yet the relationship between memory
and study repetition is not straightforward. In certain cases, rather
than enhancing memory, repetition bears no consequence and can
even be detrimental to long-term retention16–18. Such anomalies
would be explicable if prediction-error-based updating is globally
applicable to memory, whereby the surprise of new information in
light of what we already know and believe should serve as a
prominent driving force of learning. Mere repetition would be of
limited value because a predictable message is uninformative.
This is implicit in Shannon’s influential theory19 which defines
information in terms of surprise.

There are a number of existing findings which hint at the latter
possibility. First, medial temporal lobe (MTL) structures considered
to play a critical role in declarative memory—particularly the hip-
pocampus (HC) and adjacent cortices—seem to be strongly attuned
to novelty and mismatch detection. For example, enhanced MTL
activity in fMRI is evoked by simple perceptual stimuli deemed
surprising, or which violate expectations based on prior statistical
regularities/associations, such as a change in the temporal order of
stimuli presented in a repeating sequence20–25. Thus, it has been
posited that the HC generates predictions about how events will
unfold—based on past experiences—and detects mismatches
between these expectations and events as they occur21,26. Beha-
viorally, surprising episodes are sometimes remembered with
greater fidelity in later memory tests20,27. A related phenomenon,
termed hypercorrection, is found in the error-correction field,
whereby errors in tests of general knowledge are more likely to be
corrected when they are committed with high confidence28.

Second, striatal and dopaminergic midbrain structures typically
associated with nondeclarative learning are increasingly

implicated in declarative memory. For example, in neuroimaging
studies, the caudate nucleus is sometimes more active during
encoding of subsequently remembered vs. forgotten episodic
memoranda29,30. Moreover, a burgeoning literature is revealing a
causal role for dopamine and reward processes in augmenting
declarative memory31,32. Thus, anticipation of monetary reward
or punishment, and motivation to obtain reward, enhances
memory for coincident visual stimuli. This phenomenon is
associated with greater responses and functional connectivity in a
network involving the MTL, dopaminergic midbrain, and VS, in
response to reward-related memoranda31–34. Pharmacological
intervention in humans, with L-dopa and monoaminergic
stimulants which enhance dopamine transmission, has also been
shown to improve declarative memory35–37.

Some of the abovementioned findings have been interpreted
within the framework of a prominent theory, delineating a
hippocampal–striatal–VTA loop, which regulates the entry of
information into memory26. According to this putative model,
hippocampal novelty/unexpectancy signals are conveyed via the
VS to the VTA, where they contribute—along with motivation-
related information—to the firing of dopamine neurons. Direct
VTA–MTL projections in turn facilitate dopamine release in the
HC, enhancing long-term potentiation, providing a mechanism
by which salient and informationally rich stimuli can enhance
learning. Along these lines, the traditional view of a neurobiolo-
gical, cortico-hippocampal, and midbrain–basal ganglia
dissociation for declarative vs. nondeclarative learning, is being
replaced by a more nuanced approach which favors an interaction
between memory systems23,31,38–40. A PE-based account of
declarative learning would go a step further, by implying shared
rules and neurobiological substrates between some forms of these
seemingly disparate memories. The latter approach conforms to
process-based memory categorization, which distinguishes dif-
ferent forms of memory by the type of neural computation they
depend on, rather than the involvement of consciousness38,41.
However, critical empirical evidence toward this account remains
elusive because it is unknown as to whether information itself
evokes PEs that are tracked by the brain and determine long-term
memory formation. The effects of coincident extrinsic reward or
reinforcement-derived PEs on memory for pictures are typically
weak and do not scale with reward magnitude, and the memor-
anda themselves do not entail a PE—leaving open the question as
to whether prediction-error-based learning is inherent to normal
declarative memory.

We addressed this lacuna by asking whether the acquisition
and updating of declarative knowledge are governed by
Rescorla–Wagner-type rules and can be mathematically modeled
accordingly. We hypothesized that new information which
counters prior knowledge or beliefs—be they erroneous or
accurate—evokes prediction errors that engender superior
learning and incorporation of information into memory. This
behavioral hypothesis was complemented by a neurobiological
investigation, examining whether the brain implements PE-based
declarative learning by capitalizing on systems already in place for
nondeclarative learning. We predicted that the VS encodes a PE
based on discrepancies between new information and existing
declarative knowledge, as it does for violations of expected reward
and punishment. To test these hypotheses, we designed a
naturalistic protocol to study factual learning, in a manner which
is typical of the way knowledge is imparted and assessed in
educational systems. Feedback to questions probing previously
studied materials enabled us to mathematically model declarative
PEs, delineate their neural substrates with fMRI, and assess their
effects on subsequent memory. Our approach exploited the
commonplace tendency to forget or incorrectly remember
information, as well as human susceptibility to adopt false

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03992-5

2 NATURE COMMUNICATIONS |  (2018) 9:1673 | DOI: 10.1038/s41467-018-03992-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


memories. Because declarative recollection, whether accurate or
false, is accompanied by varying degrees of perceived memory
strength, we could determine how the efficacy of learning from
feedback relates to its informational PE, in terms of the magni-
tude of recollection–outcome mismatches.

We found that the degree of memory updating from feedback
was directly proportional to the semantic prediction error the
feedback information elicited, both in the case of incorrect
recollections and in the adoption of false-feedback information in
place of accurate memories. Furthermore, activity in the striatum,
frontal, and parietal cortices correlated on a trial-by-trial basis
with the feedback-evoked PE values (positive and negative), and
was predictive of subsequent memory performance. A separate
network correlated with the salience (unsigned PE) of the feed-
back information.

Results
Generating prediction errors for factual information. In a 3-
day study (Fig. 1a; Methods), participants were initially requested
to read a detailed text containing information regarding a his-
torical event unfamiliar to them (the Falklands War), and were
encouraged to encode this knowledge for a test (Test1) which
took place 2 days later.

We performed two separate studies: one addressing behavior
and another with fMRI. In the former, participants’ memory was
probed using cued recall, which required them to answer
questions concerning information they had read in the text
during the study phase. Following each question, participants

were requested to record their confidence in their answers by
rating from 0 to 100 their subjective degree of certainty that they
had answered correctly. The correct answer to the question was
then supplied in the form of a quotation from the original text
(the feedback phase). In a subset of trials, novel (i.e., false)
answers were displayed during the feedback phase (Fig. 1b).
Participants subsequently returned for a second (surprise) test
1 week later (Test2), where they were asked the same set of
questions and again rated their confidence (Fig. 1a). The fMRI
study employed recognition-memory questions, and Test1 was
carried out in the scanner (Fig. 1c).

Our primary question was whether learning and updating from
the feedback provided in Test1 was more effective when it
conflicted with prior expectations (erroneous or veridical) and
accordingly, whether the magnitude of this PE during encoding
directly impacted long-term subsequent memory performance.
The key to this was mathematically determining the PE
(outcome–expectancy) for each trial of learning, which was
afforded by the confidence measure—a proxy of memory
strength, and therefore of expectancy concerning the information
conveyed by feedback (Methods).

PE magnitude in Test1 correlates with subsequent memory.
We initially analyzed memory performance in Test2 for questions
which were answered incorrectly in Test1. In the recall study, an
average of 64% (±2.3%) of questions were answered erroneously
in Test1, of which 26% (±2.0%) were subsequently answered
correctly in Test2. As expected, performance in the recognition
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Fig. 1 Experimental paradigms of declarative knowledge acquisition and updating. a The experiments commenced with the study of a lengthy, factual text
concerning an unfamiliar historical event. Participants were required to recall information from the text in a test 2 days later and state their confidence in
each answer. Feedback (depicted in green) providing the correct answer (outcome) elicited PEs which were hypothesized to depend on the confidence
ratings (expectation), such that an erroneous answer expressed with high confidence would engender a large negative PE and vice versa. For each trial, a
PE term was calculated as the additive inverse of the confidence (–confidence) for incorrect answers, and 100-confidence for correct answers (positive
PEs). An identical (unexpected) test, 1 week later, assessed the degree of learning and memory updating from feedback in Test1. b In a subset of trials in
the recall study, a novel (false) answer was presented as feedback in order to evoke (negative) PEs for correctly answered questions (the false-memory
condition). Test2 answers determined in which trials originally correct memories were supplanted by false information. c The paradigm was modified for an
fMRI study, where Test1 was carried out in the scanner to examine neural responses to semantic PEs during feedback. Since typing is impractical in the
scanner, testing took the form of multiple-choice (recognition) questions, requiring participants to select one out of four potential answers

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03992-5 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:1673 | DOI: 10.1038/s41467-018-03992-5 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


(fMRI) study was superior, with 41% (±2.4%) of questions
answered incorrectly in Test1, of which 48.8% (±3.3%) were
subsequently answered correctly in Test2 (Supplementary Fig-
ure 1). Due to the feedback and the relatively short intertest
period, questions answered correctly in Test1 were seldom
answered incorrectly in Test2 (11.9 ± 1.6% in recall and 8.6 ±
0.7% in recognition), precluding meaningful behavioral analysis
of the relationship between positive PEs and subsequent memory.

Incorrectly answered questions from the recall experiment
were grouped into four bins of prediction error for each
participant, and a subsequent accuracy score was calculated for
each bin (Methods). This score revealed that the degree to which
participants learned from the feedback and updated their
knowledge was directly dependent upon the PE magnitude
arising from the feedback (main effect of PE; F(3,57)= 19.8, p <
0.001). Thus, on average, Test2 accuracy was nearly three times
greater for questions in which participants were highly confident
that their incorrect answer was correct in Test1 (large negative
PE), relative to those where they did not supply any response or
rated zero confidence in the veracity of their answer (Fig. 2a).
Post hoc t-tests (Bonferroni corrected) revealed that high PE
subsequent accuracy (mean= 55.4 ± 6.6%) was significantly
greater than that of the other levels (0 mean= 20.7 ± 2.1%, t(19)
= 5.7, and p < 0.001; low mean= 24.4 ± 2.1%, t(19)= 4.9, and p <
0.001; and medium mean= 30.4 ± 3.5%, t(19)= 3.9, and p < 0.01),
as well as a difference between medium and 0 PE accuracy of
borderline significance (t(19)= 2.8, p= 0.076).

Results of the fMRI study recognition tests similarly demon-
strated a significant correlation between PE and updating for
incorrectly answered questions (Fig. 2c). This data set had a
smoother distribution of PEs (Supplementary Figure 2; Methods),
so we modeled Test2 accuracy with linear regressions, using PE as
a predictor. A positive and significant relationship between the PE
and subsequent accuracy was found across subjects (mean β=
0.19 ± 0.08, t(26)= 2.22, and p < 0.05). A regression analysis of the
group median subsequent accuracy (Supplementary Figure 3)
revealed that each unit increase in magnitude of the negative PE,
led to a corresponding increase in Test2 accuracy of roughly half
a percent (β= 0.55, intercept= 29.2, R2= 0.63, and p < 0.005).
Thus, median subsequent accuracy for 0 PE trials was 38.5%, as
opposed to 100% for the −100 PE trials.

PE determines adoption of false feedback in place of correct
memory. The false-memory condition was incorporated to engen-
der the occurrence of PEs upon viewing false feedback to correctly
answered questions (stated with a confidence of 70 or less, to pre-
clude awareness). We posited that deceiving participants into
believing that they had answered erroneously would give rise to
negative PEs, again estimated numerically as the inverse of the
confidence placed in their (correct) answer. These trials enabled us to
test the proposition that stronger accurate memories should be more
amenable to being supplanted by false memories, because they
should elicit greater PEs upon provision of the fictitious feedback.

On average, 29.6% (±3.6%) of correctly answered questions
were met with false feedback. These trials were divided into low
and medium PE bins of roughly equal size. We compared the
proportion of trials where participants subsequently supplied the
false-feedback information in their Test2 answers (rather than the
original correct answer, or an incorrect answer—Supplementary
Figure 5). In accordance with the hypothesis, medium PE trials
(correct, medium confidence) were significantly more likely to
lead to the adoption and subsequent recollection of the false
feedback than low PE trials (correct, low confidence) (Fig. 2a;
mean percent false-feedback answers= 32 ± 5.8% vs. 51.6 ± 5.9%;
t(16)= 2.2, p < 0.05).

Confidence in updated memories correlates with PE. Going
beyond the binary measure of Test2 accuracy, we explored the
subjective assessment of memory accuracy, as expressed by Test2
confidence ratings. We posited that upon correction by feedback,
incorrect answers expressed with high confidence in Test1 (large
negative PE) would be replaced by correct answers recalled with
high confidence in Test2. Conversely, questions left unanswered,
or incorrectly answered with low confidence in Test1 (small
negative PE), would be answered with low confidence upon
correction in Test2 (Methods). We found that when participants
successfully learned from the feedback, confidence in the correct
Test2 answer was correlated with the PE in Test1, such that larger
negative PE values in Test1 were associated with greater con-
fidence in the correct Test2 answers. In the recall paradigm
(Fig. 2b), there was a significant main effect of PE on Test2
confidence (F(3,57)= 3.7, p= 0.017), and a significant difference
in the high vs. low PE conditions (mean 58.9 ± 3.6% vs. 74 ± 5%;
t(19)= 3, p < 0.05, Bonferroni corrected). In the recognition study,
individual linear-regression models also revealed a significant
predictive relationship between PE and Test2 confidence (mean
β= 0.29 ± 0.05; t(26)= 5.8, p < 0.001). A group-level regression
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model of the median confidence scores (Supplementary Figure 3)
indicated that each unit increase in magnitude of the negative PE
led to a corresponding increase in Test2 confidence of nearly half
a percent (β= 0.43, intercept= 45, R2= 0.89, and p < 0.001).
Thus, median confidence for 0 PE trials was 47.5%, as opposed to
90% for the −100 PE trials. Analysis of correctly answered trials
also revealed a significant relationship between PE and confidence
updating (Supplementary Figure 4).

The same phenomenon was observed in the false-memory
condition for the subset of correct-to-false trials (Fig. 2b).
Participants expressed greater confidence in their newly acquired
false memories, when the false-feedback information was adopted
in place of accurate memories (Test1 correct answers) of medium
confidence, compared to the confidence in false memories which
supplanted low-confidence correct answers (mean 74 ± 3.62% vs.
57.8 ± 5.27%; t(81)= 2.5, p < 0.05).

A general PE-based learning effect. The results demonstrate two
forms of memory updating. The prediction error was not only
related to the likelihood of successful learning and subsequent recall
of the feedback information (memory content/accuracy), but also to
the subjective strength of this learning (metamemory confidence).
We devised a method by which the two metrics could be combined
to enable a holistic measure of memory updating (Methods). In the
recognition study (Fig. 2c), the group-level regression shows that
each unit increase in PE led to a 0.6% increase in this measure of
updating (β= 0.61, intercept= 6.95, R2= 0.85, and p < 0.001).
Hence, overall updating from 0 PE feedback was 18.5% vs. 80%
from −100 PE feedback. This effect was also significant at the
subject level (mean β= 0.27 ± 0.06; t(26)= 4.13, p < 0.001).

Parametric brain encoding of informational PEs and salience.
In theorizing about how the brain might respond to the semantic
PEs in our task, we posited that there may be regions which
register the magnitude of the prediction error alone, but are not
concerned with the valence of the PE (absolute PE values), and
regions which register both their valence and magnitude (signed
PEs; Supplementary Figure 6). In the reinforcement literature,

unsigned PEs are synonymous with salience. Accordingly, we ran
two analyses to establish whether this was the case (Methods).

Regions correlating with both valence and magnitude of PE.
The first analysis revealed a highly symmetrical, bilateral network
of regions whose activity correlated with a continuous increase in
PE, from high negative to high positive values (Fig. 3 and Sup-
plementary Table 1), consistent with an encoding of signed PEs.
The largest and most significant clusters were observed in the
striatum, cingulate cortex (CC), dorsolateral prefrontal cortex
(DLPFC), inferior parietal cortex, and precuneus. Within the
striatum, there were two large clusters of activity: the first, cen-
tered on the VS, incorporating nucleus accumbens (NAc), was the
most powerful, and extended dorsally up the caudate nucleus; the
second cluster incorporated large areas of the dorsal and ventral
putamen—particularly lateral and posterior parts—and extended
laterally through the claustrum to the insula. On the right hemi-
sphere, the putamen cluster also extended ventrally and anteriorly
to the anterior MTL, including amygdala and HC. Activity in the
CC appeared to be related to the striatal activations, similarly
occurring in two major clusters: a mid-anterior cluster and mid-
posterior cluster, both centered at the same location on the y-axis
as the VS/NAc and putamen/claustrum clusters, respectively. The
large DLPFC clusters were centered on the middle frontal gyri,
with some smaller clusters in the superior gyri, and the large
parietal activations were observed in the inferior parietal lobule
(IPL). The contrasts also revealed smaller bilateral activations in
the fusiform gyrus, occipital cortex, and cerebellum.

No regions were found to be inversely correlated with PE, i.e.,
to be the most active for large negative and least active for large
positive PE events.

Regions correlating with absolute PE magnitude. The second
analysis revealed regions with a V-shaped response to the range
of PEs encountered (large positive activations to high PEs of
either valence), implying an encoding of the unsigned PE mag-
nitude, or salience/surprise (Fig. 4; Supplementary Table 2). Two
main bilateral clusters of activity were found. The first was a large
activation with peak activity in the inferior frontal gyrus (IFG),
also encompassing areas in the anterior insula and anterior
claustrum. The second was observed in the dorsomedial pre-
frontal cortex (DMPFC), with peak activity located on the medial
surface of the superior frontal gyrus. There were two smaller
clusters located in proximity in the medial frontal gyrus, as well as
two clusters in the right DLPFC.

Additionally, several regions exhibited activity consistent with
an inverse V profile of response that was greatest to small PEs and
smallest to large PEs, of either valence. These were mostly located
in the MTL, in mid, and posterior parahippocampal gyri,
bilaterally. The posterior parahippocampal deactivations also
extended to parts of the lingual gyri and posterior cingulate. The
more anterior deactivations included voxels in the HC on the left
hemisphere. Another large cluster was observed on the left side at
the intersection of the parietal, temporal, and occipital lobes.

PE-responsive regions are predictive of subsequent memory.
We hypothesized that brain regions which register the PE of the
feedback information are likely to be involved in the encoding of
that information, or updating of prior knowledge. We therefore
performed further analyses to link those activations with the
behavioral memory effects.

We found activity significantly predictive of confidence
updating within the signed PE regions (Fig. 5a and Supplemen-
tary Table 1), but not in any of the unsigned PE regions. Highly
significant correlations were observed bilaterally in the VS and

Fig. 2 Behavioral results—PE directly determines the degree of learning
from feedback and adoption of false memories. a Subsequent accuracy in
the recall study. For incorrectly answered Test1 questions (green), the
greater the PE elicited by feedback, the more likely it was for that
information to be incorporated into memory, as shown by average Test2
accuracy (left). Similarly, for correct Test1 answers (blue), false-feedback
information was more likely to supplant an accurate memory recalled with
medium confidence (medium PE) relative to one recalled with low
confidence (low PE), as shown by the average percentage of false-feedback
answers subsequently supplied in Test2 (right). b Subsequent confidence
of updated memories in the recall study. PE also determined the confidence
expressed in correct Test2 recollections, for questions initially answered
erroneously in Test1. Thus, when successfully learning from feedback,
incorrect Test1 answers stated with high confidence (high PE feedback)
were associated with high-confidence correct answers in Test2 and vice
versa (average Test2 confidence for incorrect-to-correct answers on the
left). Similarly, for the subset of questions answered correctly and
supplanted with false feedback, average Test2 confidence in the false
memory was greater when initial confidence in the correct answer was
higher (medium vs. low PE, on the right). c Summary of behavioral results in
the recognition fMRI study. A strong positive relationship was observed
between the degree of overall memory updating and PE arising from
feedback, for questions answered incorrectly in Test1. This measure of
learning combines both subsequent accuracy and confidence (see
Supplementary Figure 3 for separate measures). Error bars represent SEM
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DLPFC ROIs. Additionally, the DS (caudate) bilaterally, left
fusiform gyrus, and several smaller PFC ROIs also exhibited
significant correlative activity. These correlations were negative,
such that greater deactivation during feedback for incorrect
answers was associated with higher confidence in subsequently
corrected Test2 answers. Conversely, activity in these (and other
PE) regions was not significantly correlated with Test2 confidence
for incorrect-to-incorrect trials (Fig. 5a), further demonstrating
their specific significance with respect to the updating process.

These analyses also revealed four regions whose activity
during feedback was predictive of subsequent accuracy
(Fig. 5b and Supplementary Table 1). Three of these—the mid/

posterior cingulate, right IPL, and right putamen/insula
cluster—were of the major clusters identified in the analysis of
signed PE regions. The other was in the right inferior lateral
PFC. In each of these regions, greater deactivation in
response to negative feedback was associated with a higher
likelihood of subsequently answering the question correctly in
Test2. A whole-brain analysis of incorrect trials (updated > not
updated) did not reveal any regions that were predictive of
content updating. As with the confidence updating, a separate
analysis revealed that in none of the unsigned PE ROIs did
activity differentiate subsequently corrected from uncorrected
answers.
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Fig. 3 Brain regions correlating with PE magnitude and valence during feedback. a Substantial clusters of activity were observed bilaterally in ventral and
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Discussion
The updating of long-term memories by integrating new infor-
mation into existing knowledge is essential to maintaining the
relevance and predictive utility of one’s knowledge base in an
uncertain and dynamic world. Our results provide evidence that a
Rescorla–Wagner-type model of prediction-error-based updating
can be applied to declarative learning, whereby new information
is compared with the brain’s existing beliefs and expectations to
establish its informational value, thereby determining the strength
of its encoding and integration with prior knowledge.

We observed behaviorally that the degree of memory updating
in response to feedback information directly depends on the PE

of that information, as it relates to varying degrees of
expectancy violation. Growing recognition that memory systems
operate in an integrative manner has inspired numerous efforts to
demonstrate the influence of reinforcement and PE-type
processes on episodic recognition memory for simple sti-
muli20,23,25,27,30–34,42,43. However, the source of reward,
or PE, in these paradigms is typically incidental to
the to-be-remembered stimuli, and differences in memory are
often weak. In the current paradigm, the information itself
is the source of the PE—a critical feature of the design
which enabled us to show commonality in the rules of
learning, as opposed to an influence of one system on another.
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The putative PEs varied in valence and magnitude, and were rich
in the sense that they were semantic rather than perceptual in
nature—predictive of long-term memory in proportion to their
magnitude.

In the case of erroneously answered questions, the result that
memory updating from feedback is related to its PE closely
resembles the hypercorrection effect. This paradigm involves a
test of general knowledge where confidence ratings are measured,
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followed by an immediate retest. Several studies have shown that
high-confidence errors are more likely to be corrected relative to
low-confidence errors28,44,45 and are associated with P3-like
potentials in EEG44—similar to those elicited by “oddball” stimuli
—and ACC, DLPFC, and TPJ activations in fMRI45. The domi-
nant explanation posited in this literature is that the surprise
arising from high-confidence errors rallies attentional resources,
thereby enhancing learning. Our PE-based explanation differs in
that it reveals features inherent to the rules of declarative learning
itself. The VS response we observed supports this approach, both
because this region is not typically associated with attention, and
because the response profile linearly tracked the signed PE,
whereas an attentional response would not differentiate surpris-
ing outcomes based on their valence. These two approaches are
reminiscent of the Rescorla–Wagner vs. Pearce–Hall debate, in
which changes in associative strength are directly driven by PEs
in the former and in the latter result from error-based modulation
of attention46—but they are also compatible and may both pro-
vide explanatory utility here. For instance, the salience response
we observed is consistent with the attentional explanation (see
below); notably, this network did not include striatal regions.
Interestingly, only in the signed PE regions were the activations
predictive of subsequent memory, which suggests that PEs may
be more important in mediating the updating effect than a gen-
eric attentional response alone. Procedural and methodological
differences may account for why no striatal activation was
observed in the hypercorrection study. These include the design
of the fMRI analyses and behavioral measures, a significant
temporal separation between the test (prior to scanning) and
feedback (provided in the scanner), and the study-test–test design
with novel material employed here vs. the test–test general
knowledge protocol.

Additional evidence for a PE approach to semantic memory
was deduced from the confidence in updated memories. This
effect has not been previously documented and highlights the
different aspects of updating which are determined by PE:
memory content and metamemory assessment. Yet, the most
startling and counterintuitive of the results predicted by our
hypothesis was that stronger accurate memories were more
amenable to being supplanted by false (conflicting) information
than weaker ones, and that confidence in newly acquired false
memories was greater when they replaced accurate memories
expressed with greater confidence. The literature on false memory
is now replete with paradigms designed to distort memories of
experienced episodes, or implant entirely fabricated ones47. Much
of the research on false memory has focused on the conditions
under which people are susceptible to the impact of misleading
post-event information, such as in the misinformation effect48.
Remarkably, we were unable to find any previous studies showing
a similar effect of enhanced misinformation adoption for sub-
jectively stronger memories, or in general pertaining to the
relationship between memory confidence and susceptibility.
However, we caution that this result was based on a small number
of trials and warrants further study.

Pertinent here is the view that consolidated memories are not
stable, as once thought, but dynamic and malleable, with the
ability to be modified by new or conflicting information49. The
foremost paradigm by which this is demonstrated is reconsoli-
dation, whereby recollection, or reactivation of a memory can
induce a temporary lability, rendering it vulnerable to altera-
tion50. However, recent discoveries have shown that reactivation
alone is neither necessary nor sufficient to destabilize memory.
What does appear to be critical is the concomitant generation of a
(dopamine-dependant) PE, by the introduction of new informa-
tion, or by expectancy violation50,51. These findings suggest that
the purpose of reconsolidation is memory updating, which is only

of value when there is a need to modify a memory in light of new
information. Although there is currently only limited evidence
that PE is a determining factor for reconsolidation in human
declarative memory50,52, the fact that post-event paradigms of
memory change typically contain this element indicates that the
parallels are relevant.

The applicability of trial-and-error-based rules of learning
to knowledge acquisition does not prima facie seem fitting.
However, learning always takes place upon a backdrop of prior
experiences, semantic schema, and beliefs, against which
incoming information can be judged—even when it is entirely
novel. Semantic knowledge is also formed over cumulative
exposures to information and shares with conditioning and
procedural memory, a reliance on slow encoding of rigid asso-
ciations41. This view of knowledge acquisition is parsimonious
with predictive coding models of brain function1,2,39, folding both
the initial learning and subsequent updating into one scheme
based on surprise reduction. In this light, retrieval-based phe-
nomena such as the misinformation effect and reconsolidation
are entirely in accordance with the general principles of learning.

One limitation of our study relates to the method of utilizing
confidence judgments as a proxy for memory strength, or degree
of expectation, to estimate declarative PEs. Another critical
determinant of PE magnitude is likely the degree of accuracy
(or rather inaccuracy) of the recalled memory relative to the
information in the (feedback) answer—that is the veracity of the
memory in terms of its semantic content. This discrepancy is
perhaps a more direct measure of outcome–expectation in the
classic sense, but is difficult to estimate mathematically and is
highly subjective.

Critical to our endeavor was the observation of a neural
correlate of the informational PEs entailed in our paradigm. We
discovered a network of regions which appeared to powerfully
respond to the feedback information, in a manner strikingly
consistent with a PE signal—encoding the discrepancy between
expectations based on existing knowledge and new information.
Of primary interest were the large and powerful PE responses
observed in the striatum, particularly the VS, which is most
commonly associated with reward PEs in fMRI studies of
reinforcement learning5,8–11, and a major projection site of the
dopamine neurons thought to encode them. To our knowledge, a
direct correlate of PEs has not been previously demonstrated
in declarative learning of this nature, and few cognitive PE
correlates, such as in perceptual associative learning, have ever
been observed in the striatum320,53.

There is now substantial evidence for a role of the striatum in
declarative memory encoding. This has primarily been shown in
the context of recognition memory for words or pictures pre-
sented during or after reward-associated stimuli, or motivated by
future reward31,32,42,43. For example, picture cues predictive of
monetary reward are subsequently recognized better than neutral
cues, and are associated with greater activity in the caudate and
midbrain33. The caudate is also engaged by feedback during
declarative associative learning54. Subsequent memory-related
striatal activations have also been observed in experiments devoid
of reward or PE. For instance, increased putamen activity and
MTL connectivity were shown during the encoding of subse-
quently recognized vs. forgotten words30, and the caudate exhibits
a memory-predictive signal at the offset of short film clips29.

In addition to registering the declarative PE, we also observed a
role for the same striatal regions in subsequent memory, such that
their activity differentiated successfully from unsuccessfully
encoded feedback, and confidence in the former. However, unlike
previous studies30,34,54, we observed greater memory updating as
a function of decreasing striatal responses during our behaviorally
relevant condition of negative feedback. Although some brain
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regions consistently show deactivation-related subsequent
memory effects (see below), this is a perplexing result if
dopamine-enhanced long-term potentiation is the mechanism by
which PE modulates memory26. On the other hand, the
relationship between negative/punishment PEs, dopamine firing,
and striatal activity is a complex one. A hotly debated question is
whether these regions respond in a valence-specific manner to
PEs or instead signal “salience”—a loosely defined term relating
to the significance of a stimulus regardless of its valence5–7,55.
Dopamine neurons and striatal regions have also been shown to
increase their firing rate/activity to unexpected stimuli of both
valences, and to affectively neutral salient stimuli7,8,23,43,55,56.
Since we did not observe midbrain PE correlates in this study, we
cannot determine the consequences of these striatal deactivations
with respect to the dopamine-mediated mechanism of memory
enhancement26,31.

An important point to consider is whether VS activations in
our task reflect discrepancies between expected and observed
information, or instead are indicative of reward PE responses
associated with goal attainment. If purely cognitive feedback
relating to task performance is intrinsically motivating, reward
and punishment responses may be expected in tasks that, like
ours, do not involve extrinsic rewards. Probabilistic classification
learning and visual categorization studies are illuminating in this
regard, since no extrinsic reinforcement is utilized, and feedback
is only indicative of response accuracy. Such studies have yielded
varying, inconclusive findings as to the response profile of VS to
performance feedback57–60. Often, both positive- and negative-
feedback stimuli increased VS activity. Feedback-based caudate
activity has also been observed in declarative learning with a
paired associates word task, but in the DS, where again, the
response profile (from negative to positive) is unclear, varies over
studies, and depends on factors such as the number of choice
options and stage of learning54,61,62. Thus, it would not appear
that cognitive, performance-related feedback in itself (i.e., devoid
of semantic content) is akin to value-based reward and punish-
ment, nor accounts for the bivalent VS responses we found,
which resemble typical reinforcement-evoked responses. In gen-
eral, striatal responses to performance feedback are observed
where task performance is emphasized, either explicitly, or where
there is an expectation of improvement over trials. Additionally,
the feedback typically comprises very simple valanced cues.
Conversely, in our study, the participants were told that they
would likely answer many questions incorrectly, nor was there
any ability to improve over trials, and the feedback was not
overtly positive or negative but required semantic processing to
evaluate the veracity of prior answers.

Our findings therefore suggest that new information, as it
relates to the unexpected confirmation or refutation of extant
knowledge and beliefs, may be inherently rewarding or aversive,
such that reinforcement is embedded in natural knowledge
acquisition and updating via semantic PEs. The idea that infor-
mation alone can be of value and recruit reward systems has been
suggested in prior studies43,55. However, it remains to be seen
whether the VS response would obtain outside the context of a
task—itself encoding a purely semantic PE, or instead combining
semantic PE signals encoded elsewhere with explicit
performance-based reinforcement signals.

Beyond the striatum, we detected signed PE correlates in a
bilateral network of cortical regions. It is noteworthy that activity
in all of these regions has been shown to correlate with
reinforcement-related PEs10, strengthening our hypothesis that
PE-based declarative and nondeclarative learning share common
neural substrates. Similarly, there appears a large degree of
overlap between this network and regions commonly identified
with subsequent memory and forgetting during episodic

encoding63,64. We also noted PE correlative activity in the right
anterior MTL, which incorporated the amygdala and HC. While
the amygdala is implicated in encoding reward, and punishment-
related PEs10, the HC is not typically. MTL responses to the
occurrence of unexpected stimuli are well documented; however,
a direct hippocampal PE correlate has thus far only been
demonstrated in nondeclarative probabilistic categorization
learning40, and in an episodic action–observation paradigm20, but
not in the type of declarative semantic learning studied here.

Additionally, we found absolute PE, or saliency-associated
activations bilaterally in the DMPFC and anterior insula/IFG.
These regions have been shown to signal saliency in several
reward-based imaging studies9,11,56, respond to salient/surprising
affectively neutral stimuli24,43, and are implicated in memory
encoding63,64. Of most interest in the saliency network were the
numerous MTL clusters, primarily in the parahippocampal gyrus
which is widely observed to be predictive of successful encod-
ing63,64 and exhibits enhanced responses to salient stimuli24,43.
Reward and PE-related activity has been observed in PHC
numerous times in fMRI10, and on three occasions has been
explicitly demonstrative of a non-valenced PE signal56,65,66. In
two studies, such activity was inversely correlated with outcome
salience, as we found66,67. Moreover, parahippocampal repetition
suppression effects to visual stimuli, and their subsequent
recognition, are modulated by dopamine68.

A primary function of saliency responses entails the marshaling
of attentional resources to significant events. This is consistent
with the increased activity in frontal regions and decreased
activity in MTL, PCC, and TPJ we observed69. The latter are
prominent nodes within the default-mode network (DMN)70,
known to deactivate with external task engagement64,71, reflecting
a shifting of attention from internal processes to external stimuli.
Accordingly, the inverse V response we observed in these areas
can be explained by greater attention/task- related engagement as
(positive or negative) PE increased, possibly supporting the
updating process.

The commonality in declarative memory encoding and PE/
salience networks was further supported by a trial-by-trial sub-
sequent memory analysis for feedback to erroneous answers. We
found three cortical ROIs where feedback-related activity was
predictive of Test2 veracity: right inferior parietal, right inferior
frontal, and posterior cingulate—in addition to the putamen ROI
discussed above. Notably, in these regions, greater deactivations
in response to feedback for incorrect answers were associated
with greater Test2 accuracy. This finding is particularly interest-
ing since PCC and right inferior parietal (TPJ) regions are notable
for their deactivation as being associated with superior sub-
sequent memory for items64,72 (and are nodes in the DMN).
These two regions are also significantly connected, anatomically
and functionally, to the parahippocampal gyrus—where we also
observed deactivations from baseline in response to increasing PE
—leading to the suggestion that the PHG serves as the nexus
through which the DMN interacts with the MTL memory sys-
tem73. Indeed, the MTL—including HC—is thought to be part of
the DMN, and responds in a similar manner (deactivation in task
vs. rest) in many memory studies69,71,74. Subsequent memory
performance has even been shown to correlate with greater
deactivations in MTL at stimulus presentation75. The inferior
parietal involvement in memory is a robust finding, this region is
also sensitive to perceptual violations of expectancy, correlates
with reward PEs, and has been linked to violations of memory
expectations76,77. We also observed a dissociation between
regions correlating with subsequent confidence and accuracy,
consistent with previous behavioral and fMRI findings78.

These findings are prima facie at odds with many studies of
declarative memory, where successful encoding is associated with

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03992-5

10 NATURE COMMUNICATIONS |  (2018) 9:1673 | DOI: 10.1038/s41467-018-03992-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


increased activity in frontal and MTL regions64. In a typical study,
encoding related activity corresponding with the presentation of
simplistic, novel episodic stimuli (pictures/words) is determined in
accordance with subsequent recognition performance for those
stimuli. In contrast, the memory processes taking place here
involve the updating of complex semantic knowledge, which dif-
fers in three fundamental ways. First, there was previous exposure
to/encoding of the information in the study phase prior to scan-
ning; hence, a “remembered vs. forgotten” contrast for feedback in
Test1 is not equivalent to looking at differential brain responses to
information encountered for the first time, such as a one-shot
novel picture stimulus which is subsequently recognized or not.
Second, the feedback-based updating often simultaneously
entailed the alteration/overwriting of a competing memory, as well
as registration of a PE, rather than the pure formation of a novel
memory trace. Finally, semantic and episodic memory acquisition
is thought to depend on partially dissociable neural processes12,
with a greater cortical and basal ganglia involvement in the for-
mer41. For instance, hippocampal lesion patients with anterograde
episodic amnesia can acquire new semantic knowledge79,80. For
these reasons, attempting to view our results through the lens of
the classic memory-encoding literature is best avoided.

Elucidating the determinants of efficacious, long-term memory
formation, and its neural basis, is of paramount importance. This
PE account of declarative memory may be of significant value in
the perennial quest by educators and students to enhance
retention of knowledge, by devising more effective techniques of
learning and teaching.

Methods
Participants. Fifty-four volunteers participated in the study, 21 in the behavioral
experiment (14 males, mean age of 27 ± 3.4 years), and 30 in the fMRI study (right-
handed, 19 males, mean age of 26 ± 2.6 years). One participant in the behavioral
experiment was excluded from analysis due to suspicion of the false-memory
manipulation. In the fMRI experiment, one participant was scanned with a dif-
ferent sequence at a lower resolution and was excluded from the imaging (but not
behavioral) analysis. Another participant requested to exit the scanner during the
second run, and a third participant was interrupted by a technical fault during the
second run, leaving behavioral and imaging data for the first run alone. The
experimental protocol was approved by the Institutional Review Board of the
Sourasky Medical Center, Tel Aviv. All participants were healthy, had normal or
corrected-to-normal vision, provided written informed consent, and were
remunerated for their participation.

Memoranda. The documentary text was typed in Hebrew and comprised six
single-sided A4 pages. The text dealt with the history of the Falkland Islands and
was mostly concerned with the war that took place between the United Kingdom
and Argentina in 1982. The information spanned a broad range of topics—poli-
tical, military, geographical, numerical, economic, et cetera—and took most par-
ticipants 35–45 min to read. This included global and local events leading up to,
during, and in the aftermath of the war. We deliberately chose a topic that was
arcane to our subject pool, and ensured that the information in the text was highly
detailed and novel. Post-test debriefing confirmed that most participants were
entirely unfamiliar with the topic. The recognition test was also piloted on a
number of individuals who had not read the text, to verify that without study, a
score significantly greater than chance would be unattainable.

Experimental procedure. On the first day (the study phase), participants were
invited to a quiet room where they were asked to read the text once, at their own
pace, and to try and absorb as much of the information in the text as possible for a
test of the topic, 2 days later.

Participants in the behavioral study returned to the same room for Test1. The
experimenter explained how to answer the questions with some practice trials (on
an unrelated topic) after which they started the task. They were informed that the
test would be difficult and that it was important to skip, rather than guess the
answers to questions, if they had no conception of the correct answer. The cued
recall test comprised 100 computer-based questions, probing their knowledge of
facts explicitly detailed in the text. The same set of questions (randomized in order)
was utilized for all participants.

The trial began with the presentation of the question on a screen, for example:
“How many weeks did the Falklands war last?” The question remained visible while
the participant typed their answer into a box presented underneath the question,
pressing enter to proceed. Participants were encouraged to skip questions, rather

than make outright guesses, in which case they were instructed not to type a
response and simply press enter. They were next asked to provide a confidence
rating which could be any value between 0 (if skipped, i.e., no idea what the correct
answer is) and 100 (indicating complete certainty that their answer was correct).
The question and confidence phases were not time limited. Finally, the feedback
was presented for 5.5 s, after which the next trial commenced.

During Test1, all trials had the potential to display the correct or false feedback
—the latter being a plausible yet significantly different answer to the question. Just
as there was only one possible correct feedback answer which could be displayed,
each question was associated with one possible false-feedback answer. Naturally,
this investigation necessitated that participants be naïve to the manipulation. Thus,
we did not provide false feedback to any questions answered with a confidence
above 70—a level determined by pilot testing to satisfy this prerequisite.
Participants who nevertheless became aware of the manipulation were excluded
from the study. Using a pseudo-random number generator, questions to which
answers were supplied with a confidence rating below 60 displayed the false
feedback on 75% of trials, and on 60% of trials with a confidence rating between 60
and 70. The large proportion of false-feedback trials was necessary because the
veracity of recall answers could only be determined post testing, so we could not
provide false feedback solely following correct answers. Furthermore, there were
fewer correct than incorrect answers (average 36%) and they tended to be
expressed with higher confidence (average confidence for correct answers was 70.5,
confidence was above 70—the cutoff—in 56% of correct trials). In order to generate
sufficient trials where participants were supplied with false feedback following
correct answers of low and medium confidence, we therefore resorted to high
proportions within these confidence ranges—the corollary being that a large
proportion of incorrect answers was met with false feedback (Supplementary
Table 3).

FMRI participants performed Test1 in the scanner, in two runs (50 questions in
each, lasting for 20–25min). Listed below each question were four potential answers
to choose from. The same 100 questions and potential answers were used for all
participants (randomized in order). Participants selected their answer using a right-
hand response box featuring four buttons, or skipped the question using a response
box supplied to their left hand—as with the recall study, they were instructed not to
make an outright guess if they had no conception of the answer. Where an answer
was selected, the chosen option was highlighted in yellow for 0.5 s. If no response
was registered within 50 s the trial proceeded. For the confidence rating, two of the
right-hand buttons were used to move the red bar on the visual analog scale left or
right (from an initial location of 50) in steps of 10. The confidence number
corresponding to the bar’s location was indicated directly above it (Fig. 1). To enter
the rating and move to the next phase, the left-hand button was pressed. In the
event of a mistake (incorrect button press), instructions were to enter zero for the
confidence. The feedback phase displayed the question and potential answers, with
the correct answer highlighted in green, and lasted for 4.5 s. There were no false-
feedback answers supplied in the fMRI study. Intertrial intervals (black screen), as
well as those separating question/response–confidence, and confidence–feedback
phases were jittered, to aid in deconvolution of event-related neural responses
(range and median: 3–7 s, 4 s; 1–3 s, 2 s; 3–10 s, 5 s, respectively).

Test2 occurred 7 days following Test1, and was a “surprise” test in the sense
that participants were not explicitly told that there would be another test. The test
took place in the behavioral testing room and comprised the same 100 questions
(again randomized). For the fMRI participants, the four answer options were also
identical to those provided in Test1 (randomized in their relative order), and
selection was by way of keyboard buttons. Besides the omission of the feedback
phase, all other aspects of the task were identical to those of Test1. Following the
test, participants were asked to fill in a questionnaire (debrief), concerning the
study, test, and their performance. We asked whether the questions were clear and
they were able to remain concentrated throughout, how difficult it was to
remember the details, strategies used to learn and remember details (if any),
difficulty in grading confidence, noting of anything suspicious or unusual in the
tests, and what they though the aim of the study was etc.

Behavioral analysis. Other than scoring of the typed answers to recall questions
(the recall experiment), analysis of behavioral data was performed with MATLAB
(version 7.14 R2012a; MathWorks) and all statistical tests were two-tailed.

We first calculated the PE for each trial in Test1. Based on the reinforcement
learning literature—where the magnitude and valence of a PE is equated with the
degree to which an outcome is better or worse than expected—we posited that the
semantic PE valence is determined by whether the feedback information confirms
or negates what is expected, or predicted by extant semantic knowledge, and its
magnitude by the degree of strength (confidence) imparted in that prior
knowledge/prediction. Accordingly, feedback to correct answers in Test1 stated
with a confidence below 100 would elicit positive PEs (better than the expected
outcome) and vice versa for incorrect answers (where confidence above 0 would
imply a worse-than-expected outcome). Thus, for incorrect answers, PE= –
confidence, and for correct answers, PE= 100−confidence. For example, an
incorrect answer expressed with a high degree of confidence, e.g., 90% certainty
that the answer was correct, would give rise to a large negative PE of −90, whereas
an incorrect answer stated with only a 30% degree of certainty would evoke a
PE of −30, upon encountering the feedback. Likewise, a correct answer stated with
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a low degree of confidence would be associated with a larger positive PE relative to
one supplied with greater certainty.

Incorrectly answered questions from the recall experiment were grouped into
four bins of prediction error for each participant, and a subsequent accuracy score
was calculated for each bin: 0 PE (questions which were skipped—i.e., no answer
supplied, or rated with zero confidence), low, medium, and high negative PE,
corresponding to erroneous answers stated with confidence values from 1 to 33, 34
to 66, and 67 to 100, respectively. To calculate a subsequent accuracy score
(percentage), we summed the number of questions in each bin which were
answered correctly in Test2 (i.e., incorrect-to-correct), and divided by the total
number (incorrect) in each bin, for each subject. In cases where incorrect answers/
skipped questions were met with false feedback, accuracy in Test2 was scored with
respect to the feedback, not the original text, such that an accurate updating of
memory entailed providing the feedback answer (see below).

For the subsequent accuracy analysis in the recall study, we performed a one-
way repeated measures ANOVA where the dependent variable was Test2 accuracy
and the independent variable was PE (0, low, medium, and high). Two missing
values were substituted by the condition group mean (deletion of these participants
entirely resulted in no change to the outcome of the ANOVA or post hoc
comparisons). Post hoc t-test p values were multiplied by the number of multiple
comparisons (six) for the Bonferroni correction. In the recognition study, the
method used to gauge confidence was by means of a visual analog scale which
restricted input to units of 10 (i.e., 11 potential responses from 0 to 100). There were
significantly fewer 0 PE (skipped) trials in the recognition relative to the recall test
(Test1 mean of 12% vs. 29%, respectively). This facilitated a data set with a
smoother distribution of PEs, enabling a more fine-grained analysis (Supplementary
Figure 2). The accuracy score was the percentage of incorrect Test1 questions
correctly answered in Test2, for each of the 11 PE values. The significance of the
relationship between Test2 accuracy and PE was determined by performing a one-
sample t-test on the β values of the single-subject regressions, to show that the
parameter significantly differed from zero, as well as testing the significance of the
group-level regression model. To determine the effect of PE on the uptake of false
feedback in correctly answered Test1 questions, a paired t-test was performed,
comparing the proportion of false-feedback Test2 answers for low vs. medium PE
bins, excluding three subjects who did not have data in one of the two conditions
(mean replacement being unsuitable for a within-subjects test comparing only two
conditions). The reduction in the number of bins reflected the smaller number of
correct–false-feedback trials (10/36 correct trials, on average) and the narrower PE
range (limited at −70). For this reason, the trials were split into two bins of roughly
equal number to enable a random-effects statistical analysis, which was achieved by
creating PE bins of −1 to −49 (low) and −49 to −70 (medium).

Note that the subsequent memory analysis in the recall study incorporated
trials where participants skipped or erroneously answered the questions, and were
supplied with false feedback (Supplementary Table 3). In these cases, accuracy of
the Test2 answer was determined in accordance with the false feedback provided.
When analyzing the learning of feedback following incorrect answers, we did not
differentiate the two trial types (i.e., veridical and false feedback). Nevertheless, we
performed an additional analysis excluding incorrect–false-feedback trials. Indeed,
the PE–subsequent memory relationship remained significant, and the effect was
even greater without these trials. We also ruled out the possibility that the results
were influenced by unequal numbers of trials in each bin by ranking the PEs and
dividing them into three groups of equal number (as well as a group of 0 PE trials).
Here too, we observed a significant stepwise increase in accuracy as PE increased.

The subsequent confidence analysis in the recall study examined the subset of
Test1 trials which were answered erroneously or skipped, and subsequently corrected
(incorrect-to-correct trials; Supplementary Figure 1). We calculated an average of the
Test2 confidence values for each Test1 PE bin and performed a one-way repeated
measures ANOVA where the dependent variable was Test2 confidence (for incorrect-
to-correct trials) and the independent variable was PE (0, low, medium, and high). Six
missing values in the table were substituted by the condition mean. Post hoc t-test p
values were multiplied by the number of multiple comparisons (six) for the
Bonferroni correction. In the recognition study, significance of the relationship
between Test2 confidence and PE was determined by performing a one-sample t-test
on the β values of the single-subject regressions, to show that the parameter
significantly differed from zero, as well as testing the significance of the group-level
regression model. To test for a difference in Test2 confidence of false-feedback
answers, between the subsets of low and medium PE Test1 questions answered
correctly and supplied with false feedback (i.e., low PE, correct-to-false and medium
PE, correct-to-false), we performed a fixed-effects t-test to compare pooled Test2
confidence values for each subset. This approach was taken to minimize the effect of
missing single-subject data, due to the small subset of trials in this analysis.

We calculated the overall updating effect (Fig. 2c) by summing the confidence
level of each correct answer in Test2 (assigning 0 to those remaining incorrect) and
dividing by the total number of incorrect answers for each unique Test1 PE value.
In other words, an overall score of 100 would indicate that all incorrect Test1 trials
for a given PE value were answered correctly and with a confidence of 100 in Test2.
If only half the trials were answered correctly, and with an average confidence of
50, the overall updating value would be 25. In the recognition study, significance of
the relationship between overall updating and PE (Fig. 2c), was determined by
performing a one-sample t-test on the β values of the single-subject regressions to

show that the parameter significantly differed from zero, as well as testing the
significance of the group-level regression model.

In the recall study, certain trial types—which occurred very infrequently—were
excluded from analyses. These were instances of incorrect Test1 answers in the
false-feedback condition where (a) the incorrect answer matched the ensuing false
feedback (leading to a false sense of having answered correctly), or (b) the answer
provided in Test2 was correct with respect to the original text (i.e., provided the
correct answer despite initially failing to do so and receiving false feedback). We
also excluded rare instances where correct Test1 answers were stated with a
confidence rating of zero (for the false-feedback analyses), and in the imaging
analyses - hence there were no +100 PE events. In the recognition study, we
excluded a small number of trials where for a given question in either Test1 or
Test2, (a) no answer was selected within the time limit, or (b) a mistake was made
in answer selection, as indicated by a zero-confidence rating where an answer was
chosen (i.e., not skipped). In instances where these events occurred in Test2, we did
not exclude the corresponding Test1 trial from the imaging analysis of PE
correlative regions.

fMRI acquisition and analysis. Scanning was performed with a 3T Trio Mag-
netom Siemens MRI scanner located at the Ascher Imaging Center, Weizmann
Institute of Science. High-resolution T2*-weighted functional images were acquired
using a multi-band-accelerated echo-planar imaging (EPI) sequence developed at
the University of Minnesota CMRR (https://www.cmrr.umn.edu/multiband/), and
a 32-channel head coil. This enabled the acquisition of BOLD responses from the
whole cerebrum in spatial resolution of 2 × 2 × 2-mm voxels (TR: 2000 ms, TE: 33
ms, flip angle: 75°, 66 slices (no gap) at an oblique angle of 30° from ACPC, and
multiband factor: 3—interleaved). Following a brief practice, functional scans were
acquired in two runs, after which T1-weighted high-resolution (1 × 1 × 1 mm)
anatomical images were acquired for each subject with a magnetization-prepared
rapid-acquisition gradient-echo (MP-RAGE) pulse sequence (TE 2.98 ms, TR 2300
ms, TI 900 ms, and alpha 9°) to allow accurate 3D reconstruction and volume-
based statistical analysis.

All data were preprocessed and analyzed using BrainVoyager QX 2.8 (Brain
Innovation) in combination with in-house code (MATLAB 7.14 R2012a;
MathWorks) and NeuroElf (version 1.0; http://neuroelf.net/). The first five volumes
from the beginning of each scan were discarded. Preprocessing of the remaining
images included realignment, removal of head-motion artifacts, slice-scan timing
correction, and high-pass frequency filtering. The functional and anatomical data
were aligned and spatially normalized to Talairach space. The normalized
functional data were spatially smoothed using a 3D 6-mm full-width-at-half-
maximum (FWHM) Gaussian kernel.

The focus of the fMRI study was to identify the brain regions whose blood-
oxygen-level-dependent (BOLD) activity and timing corresponded to the putative
declarative PEs elicited in Test1, and determine whether the nature of these
responses accorded with our assumptions about the PE magnitude and valence. To
this effect, our analyses primarily focused on the 4.5-s feedback epoch, wherein the
PE was presumed to be elicited.

Two random-effects general linear model (GLM) analyses were performed on
the functional data, examining variance in regional BOLD response attributable to
different regressors of interest, relating to PE encoding and subsequent memory.
All trial events were modeled by convolving them with the canonical hemodynamic
response function (HRF) for their duration. Feedback events of different trial types
were modeled as separate predictors in accordance with the purpose of the GLM,
and parametric modulators of various conditions were incorporated into the model
as further regressors. In both GLMs, we separately modeled feedback for mistake
trials as nuisance variables (such as questions where an unintended answer was
accidentally selected—as indicated by a zero- confidence rating—or where no
answer was selected within the time limit). During preprocessing, we identified
volumes where large movements were deemed to affect the signal (causing spikes),
and rows of the design matrix corresponding to these (and their adjacent)
timepoints were set to zero.

The first GLM (PE encoding), modeled all events during each trial in Test1:
question, response, confidence, feedback-correct (i.e., feedback following correct
answers), and feedback-incorrect. The feedback regressors also incorporated
parametric modulators which comprised the numerical values of the PEs as
calculated above—positive for correct, and negative for incorrect feedback events.
While correct Test1 responses were of limited value in terms of predicting
subsequent memory behavior over the timescales entailed in our paradigm (since
nearly all questions answered correctly in Test1 were also answered correctly in
Test2), they were of importance with respect to delineating their underlying neural
correlates. For detecting BOLD responses correlated with PE at the time of
feedback, two statistical maps were produced (signed, unsigned PE), with a
random-effects group analysis of the beta images from the single-subject contrast
maps, identifying regions showing significant modulation by conjunctions of
regressors (each significant), specified at the first (single-subject) level (see below).
The contrast maps display voxels with a statistical significance of p < 0.001
(uncorrected) calculated according to the formula p= αn where n is the number of
conjunctions, with a minimum cluster size of 10 voxels.

For detecting BOLD activity that correlated with a continuous increase in PE,
from high negative to high positive values (reflecting an encoding of magnitude
and valence—or signed PE), we performed a conjunction of three contrasts: voxels
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where activity for positive PEs was greater than negative PEs (feedback-correct >
feedback-incorrect), voxels where activity positively correlated with positive PEs
(+parametric-feedback-correct), and voxels where activity positively correlated
with negative PEs (+parametric-feedback-incorrect). Regions positively correlating
with negative PEs show a profile of reduced activity as the negative PE gets larger,
in other words, greater activity for less-negative values (small negative PE) and
lower activity for more negative values (large negative PE). This conjunction
enabled the identification of voxels in the brain whose activity linearly increased
from least active (most deactivated) in response to large negative PE events, to most
active in response to large positive PEs, i.e., tracking PE from −100 to +100
(Supplementary Figure 6). This analysis was stricter than a simple model with one
parametric predictor containing all PEs, which could have identified regions where,
e.g., activity was only driven by a difference between correct and incorrect
feedback.

From the same GLM, we also performed a conjunction of two contrasts where
activity positively correlated with positive PEs (+parametric-feedback-correct) and
negatively correlated with negative PEs (–parametric-feedback-incorrect). This
conjunction identified voxels whose activity was consistent with an encoding of
unsigned PE (absolute magnitude).

For the subsequent memory GLM, all events were modeled as in the PE GLM,
except for the feedback events which were modeled by three predictors: correct,
incorrect-to-correct, and incorrect-to-incorrect. Thus, Test1 feedback events for
incorrectly answered questions were classified in accordance with the subsequent
Test2 accuracy for those questions (rather than the PE). In addition, the incorrect-
to-correct and incorrect-to- incorrect predictors incorporated a parametric
modulator, which was the Test2 confidence score (0–100) supplied with each
answer. From this GLM, we performed two analyses.

To determine if any PE regions were associated with the confidence-updating
effect (Fig. 2a), we looked for brain activity that correlated with Test2 confidence
scores during the feedback events in Test1. Of interest here were the subset of
incorrect-to-correct trials. We restricted this contrast to the PE regions of interest
(ROIs) delineated by the initial GLM, performing one analysis for the signed PE
regions and another for the unsigned regions. To ascertain which of the PE regions
exhibited a difference in activity that was predictive of Test2 accuracy, for questions
answered erroneously, we contrasted the incorrect-to-correct and incorrect-to-
incorrect neural responses (updated > not updated) within the PE ROIs. Mean beta
values for each feedback regressor in the subsequent memory GLM were extracted
from each of the ROIs, for each subject. We performed a paired t-test of incorrect-
to-correct vs. incorrect-to-incorrect beta values for the subsequent accuracy
contrast, and a one-sample t-test of the Test2 confidence parametric regressor beta
values for the subsequent confidence contrast, each with a statistical significance of
p < 0.05.

Data availability. The data that support the findings of this study are available
from the corresponding authors upon reasonable request.
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