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A B S T R A C T

The literature has long emphasized the role of higher cortical structures in endogenous orienting. Based on
evolutionary explanation and previous data, we explored the possibility that lower monocular channels may also
have a functional role in endogenous orienting of attention. Sensitive behavioral manipulation was used to probe
the contribution of monocularly segregated regions in a simple cue – target detection task. A central spatially
informative cue, and its ensuing target, were presented to the same or different eyes at varying cue-target
intervals. Results indicated that the onset of endogenous orienting was apparent earlier when the cue and target
were presented to the same eye. The data provides converging evidence for the notion that endogenous facil-
itation is modulated by monocular portions of the visual stream. This, in turn, suggests that higher cortical
mechanisms are not exclusively responsible for endogenous orienting, and that a dynamic interaction between
higher and lower neural levels, might be involved.

1. Introduction

Looking for your smartphone before you want to call a friend, or
responding to a ringing smartphone when someone calls you, are both
everyday situations in which humans orient their attention. Orienting
of attention is defined as - allocation of attention to specific objects or
locations in space. As described by many authors (see, e.g., Posner,
1980) orienting may be generated voluntarily (endogenously), or can
be captured by an external stimulus (exogenously).

A common method for examining the two types of attentional or-
ienting is by employing two versions of Posner's cuing task (Klein,
2005; Posner, 1980). When studying exogenous orienting of attention, a
non-predictive peripheral cue is presented before the appearance of a
target. The typical pattern of results in this task is an early facilitation
followed by inhibition of return (IOR; Posner and Cohen, 1984). That is,
reaction time (RT) for Valid trials (i.e., target appears at the cued lo-
cation) is faster than for Invalid trials (i.e., target and cue appear at
opposite locations) at short SOAs (stimulus onset asynchrony—the
duration from cue onset until target onset) and slower for Valid than
Invalid trials at longer SOAs. When studying endogenous orienting, a
central predictive cue (e.g., central arrows, numbers or color patches) is
presented before the appearance of a peripheral target. The typical
pattern of results elicited in such conditions, is that RT for Valid trials is
faster than for Invalid trials, and this pattern gradually emerges over
SOAs.

Behavioral studies have demonstrated several differences between

exogenous and endogenous orienting (for a review, see Klein, 2009, p.
245–248). There are differences in the time course of facilitation, that
is, endogenous orienting is slower to develop than exogenous orienting
(Shepherd and Müller, 1989). There are differences in the automaticity
of the effects, exogenous orienting is more automatic than endogenous
orienting (Carrasco et al., 2006; Hein et al., 2006; Jonides, 1981;
Yeshurun and Carrasco, 1998). There are also differences in the at-
tentional components that are involved in the two tasks, although fa-
cilitation is observed in both forms of orienting, IOR is observed in the
aftermath of exogenous but not endogenous orienting (Posner and
Cohen, 1984; Rafal et al., 1989). In contrast to the general agreement in
behavioral studies that the two attentional systems act independently
(Berger et al., 2005; Berlucchi et al., 2000; Lupiáñez et al., 2004), as
reviewed below, most imaging studies suggest that the two systems
share similar neural substrates.

1.1. Does monocular channels have a functional role in attentional
orienting?

Orienting of attention is often considered to be accomplished mostly
by higher regions of the cortical visual system. Both exogenous and
endogenous orienting of attention have been demonstrated to activate a
fronto-parietal cortical network (Andersen et al., 1997; Kincade et al.,
2005; Peelen et al., 2004; Rosen et al., 1999; Voytko et al., 1994; Yantis
et al., 2002). According to one influential theory (Corbetta and
Shulman, 2002), dorsal and ventral fronto-parietal networks (including
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the superior parietal lobe, temporal parietal junction, and frontal eye
field) are responsible for orienting attention. Rosen et al. (1999)
showed that both exogenous and endogenous orienting activated bi-
lateral parietal and dorsal premotor regions, including the frontal eye
fields.

Those theories focus mainly on higher cortical networks, somewhat
neglecting lower visual areas and subcortical regions. The neural
findings are rather inconsistent and a debate exists regarding the en-
gagements of higher versus lower levels of the visual system in or-
ienting of exogenous and endogenous attention. The tendency to im-
plicate higher cortical involvement in attentional orienting, might not
be surprising when considering some limitations of commonly used
imaging techniques. For instance, functional magnetic resonance ima-
ging (fMRI) experiments have a tendency to overemphasize cortical
activation over subcortical structures (LaBar et al., 2001). Subcortical
structures are smaller, and are more difficult to image because of the
reduction in signal-to-noise ratio relative to cortical regions. In addi-
tion, it is not simple to ascribe direct causal relations between activa-
tion in brain areas and particular cognitive events, potentially leading
to misinterpretations of epiphenomenal brain activations. Taken to-
gether, these limitations might obscure a full understanding of the
cognitive-neural basis of exogenous and endogenous attention.

In contrast to the suggestion that higher visual regions are the main
neural substrates involved in attentional orienting, recent studies de-
monstrated that the primary visual cortex (V1) is also involved in
exogenous attentional orienting (Li, 2002; Zhang et al., 2012b). In
addition, it was suggested that subcortical regions might also be in-
volved in orienting of attention (Lovejoy and Krauzlis, 2009; McAlonan
et al., 2008; Rafal et al., 1988; Voytko et al., 1994). It was suggested
that the cholinergic system, arising in the basal forebrain, plays a cri-
tical role in attentional orienting, so lesions of the basal forebrain in
monkeys interfere with orienting of attention (Voytko et al., 1994). In
addition, it was previously proposed that the exogenous orienting
system may be phylogenetically older than the endogenous orienting
system, allowing us to automatically respond to environmental de-
mands and react quickly to stimuli that are likely to provide behavio-
rally relevant information (Carrasco, 2011). Respectively, studies sug-
gested that endogenous orienting might involve higher cortical regions
(e.g., fronto-parietal), and that exogenous attention also recruits sub-
cortical processing (Robinson and Kertzman, 1995; Zackon et al.,
1999). Study on the macaque monkeys also demonstrated that a sub-
cortical region (the Superior Colliculus; SC) is involved in exogenous
orienting, but not in endogenous orienting (Robinson and Kertzman,
1995).

When different methods such as sensitive behavioral manipulations
(Gabay and Behrmann, 2014; Self and Roelfsema, 2010); single cells
recording (Dorris et al., 2002); patient study (Sapir et al., 1999) and
examining the archer fish as a model for early evolutionary species
(Gabay et al., 2013) were used to probe the contribution of subcortical
areas, it was demonstrated that subcortical structures have a functional
role in exogenous orienting.

An outstanding question is whether monocular channels are also
involved in endogenous orienting. In contrast to most literature
(Corbetta et al., 2000; Kincade et al., 2005; Peelen et al., 2004; Rosen
et al., 1999), there is some data implying monocular involvement in
endogenous orienting. First, by recording from neurons in attending
macaque monkeys, it was demonstrated that attention modulates visual
signals before they reach the cortex by increasing responses of neurons
in the lateral geniculate nucleus (LGN). Those results suggesting sources
of visual attention modulation in the LGN (McAlonan et al., 2008), and
imply that subcortical mechanisms can be involved also in endogenous
orienting of visual attention. Second, when high-resolution fMRI was
combined with a threshold–contrast detection task to explore the role of
the SC in endogenous visual attention, it was discovered that the SC
exhibits a retinotopically selective, attention-related, response (Katyal
and Ress, 2014). Third, when orienting of visual attention was studied

in patients with progressive supranuclear palsy (PSP), Rafal et al.
(1988) showed that the midbrain retinotectal pathways are important
not only for controlling eye movements, but also for orienting en-
dogenous attention. In a recent study, we have demonstrated that the
archerfish can also orient attention endogenously (Saban et al., 2017b),
a finding which also strengthen the claim that subcortical structures
might have a functional role in endogenous orienting. To summarize,
there is some basis to surmise the involvement of lower monocular
channels (subcortical regions and V1) in the process of endogenous
orienting.

1.2. How to probe the contribution of monocular channels?

In contrast to the above mentioned methods used to implicate the
involvement of subcortical structures in endogenous orienting, this
question can also be addressed by employing a sensitive behavioral
method. By controlling the visual information presented to each eye
separately, one can examine the involvement of monocular portions of
the visual system (subcortical regions and V1) in endogenous atten-
tional orienting. Visual input, once received by the retina is mono-
cularly segregated. The information is projected to the lateral genicu-
late nucleus (LGN) and subsequently reaches striate and binocular
extrastriate regions (Horton et al., 1990; Menon et al., 1997). Extra-
striate visual areas are mostly binocular and their activation is not eye-
dependent. By using a stereoscope, it is possible to manipulate the vi-
sual information presented to different eyes separately. As such, ma-
nipulating the cue and target Eye-of-Origin provides a useful tool for
isolating the involvement of monocular (mostly subcortical regions and
V1) versus binocular (mostly cortical) neural channels (e.g., Saban
et al., 2017a; Saban et al., in press).

As mentioned above, studies which examined exogenous orienting
demonstrated that when the cue and target were presented to different
eyes (versus the same eye), the onset of facilitation was delayed (Gabay
and Behrmann, 2014; Self and Roelfsema, 2010). Based on the visual
channels mechanism explained, the authors concluded that exogenous
facilitation involves subcortical structures. Using the same method, in a
binocular-rivalry paradigm, it was demonstrated that attending a
monocular cue enhanced the competitive strength of a stimulus pre-
sented to the cued eye (Zhang et al., 2012a). This study examined the
influence of endogenous cuing on information processing. However, the
involvement of monocular portions of the visual stream in endogenous
spatial attention have not been studied yet.

The goal of the current study was to apply the same method and
logic to endogenous orienting. To do so, we used a simple detection
task, in which a predictive central cue was presented before the ap-
pearance of a peripheral target. Using the stereoscope, we manipulated
the eye to which the endogenous cue and target were presented: In the
different eyes condition, the cue and target were presented to different
eyes, and in the same eye condition, both were presented to the same
eye. If the attentional dynamic is modulated by the cue and target Eye-
of-Origin (same versus different eyes), this implies a functional role of
monocular visual pathways in endogenous orienting.

2. Experiment 1

2.1. Method

2.1.1. Participants
32 participants (mean age 23.3; 25 females) volunteered to parti-

cipate in exchange for payment or course credit. All had normal or
corrected-to-normal vision. The study was approved by the ethics
committee of the University of Haifa.

2.1.2. Stimulus and apparatus
Stimulus presentation was performed using a HP Z200 computer,

operating with Windows 7 system. Stimuli were displayed on a
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Samsung LCD monitor (model S24C650PL) with a recommended re-
solution of 1680 × 1050. Responses were made using DELL Hebrew-
English Extended Keyboard (model RT7D50 SK-8115). The computer
monitor was positioned 57 cm in front of a stereoscope (model
ScreenScope LCD SA200LCD), blocking the participants' direct view of
the monitor (see Fig. 1). The monitor presentation was divided into two
halves (each half was presented to a different eye), and consisted of two
rectangles (6°X17.8°) placed 10.3° from the center of the screen, and
20.6° from each other. Each rectangle contained 3 squares (2.8° each
side) in a vertical alignment. The upper and lower squares were placed
at 5.8° from the center of the screen and the central square was placed
at its center. A central fixation cross comprised two lines (0.7° each),
centered within the central squares. Cues consisted of red or green
colors filling in the central square. An asterisk target (0.7°) was then
presented, centered within one of the peripheral squares. Except for the
cues, all stimuli were white figures against a black background.

2.1.3. Procedure
Typical experimental trials are depicted in Fig. 2. Each trial began

with a fixation cross appearing for 500 ms. Two hundred ms after
fixation disappeared, the central cue was presented for 100 ms. After a
variable SOA of 100, 500 or 1000 ms, the target appeared for 3000 ms
or until a response was detected. The target appeared at the cued lo-
cation (Valid trial) or at the opposite location (Invalid trial). Each color
was associated with a specific location (counterbalanced between par-
ticipants), and the target appeared in the predicted location in 80% of
the trials. Participants were informed about cue predictability. The cue
and target were presented to the left or right eye with equal probability.
There were four possible target locations that varied equally and ran-
domly: Left eye-up, left eye-down, right eye-up, right eye-down. Par-
ticipants were instructed to respond to target appearance by pressing
the space bar of a keyboard with their dominant hand as fast as pos-
sible. After manual response an inter-trial interval of 1000 ms was in-
troduced. Each participant had 16 practice trials before the experiment
began. In 6.25% of the trials, no target appeared (i.e., catch trials) and
the participant was instructed not to respond. Catch trials were dis-
persed randomly across the trials. Each participant completed a total of
512 experimental trials divided into four blocks. For each of the two
Eye-of-Origin conditions, subjects performed 64 Valid trials for each
one of the three SOAs, and 16 Invalid trials for each one of the three
SOAs. All instructions were automated and presented on the screen. The
different experimental conditions were randomly interleaved within
each block.

2.2. Results

Trials in which RT was longer than 2000 ms or shorter than 100 ms
were excluded from the analyses (less than 1%). Participants responded
during catch trials on less than 1% of the trials, and at less than 1% of
the trials in which target appeared the participants didn't respond.

For each Eye-of-Origin condition (Same, Different), an analysis of
variance (ANOVA) with SOA (100 ms, 500 ms or 1000 ms), and
Validity (Valid, Invalid) as a within-subject factors was conducted with
RT as the dependent variable. Fig. 3 presents RT as a function of Eye-of-
Origin, SOA and Validity.

When the cue and target were presented to the same eye, the main
effect of SOA was significant [F (2, 62) = 34.2, MSE = 996,
P<0.001], indicating faster RT with increasing SOAs. The main effect
of Validity was also significant [F (1, 31) = 15.7, MSE = 960,
P<0.001], indicating a significant facilitation. The SOA x Validity
interaction was not significant [F (2, 62)< 1, NS], indicating a sig-
nificant facilitation at all SOAs [F (1, 31) = 4.7, MSE = 1260,
P<0.05; F (1, 31) = 8.7, MSE = 688, P< 0.01; F (1, 31) = 5.66, MSE
= 598, P< 0.05, for the 100 ms, 500 ms and 1000 ms SOAs, respec-
tively].

When the cue and target were presented to different eyes, the main

effect of SOA was significant [F (2, 62) = 19.13, MSE = 1054,
P< 0.001]. The main effect of Validity was also significant [F (1, 31) =
6, MSE = 1233, P<0.05]. In contrast to the same eye condition, the
SOA × Validity interaction in the different eyes condition was sig-
nificant [F (2, 62) = 3.15, MSE = 617, P<0.05]. Further analyses of
this interaction indicated that no facilitation was found at the 100 ms
SOA, but at the two later SOAs a significant facilitation was observed [F
(1, 31)< 1, NS; F (1, 31) = 5.59, MSE = 884, P<0.05; F (1, 31) =
5.22, MSE = 1212, P<0.05, for the 100 ms, 500 ms and 1000 ms
SOAs, respectively].1

2.3. Discussion

Early facilitation was observed at the 100 ms SOA in the same eye
condition, but not in the different eyes condition. At the 500 ms and
1000 ms SOAs, facilitation was observed in both conditions. Thus far,
the results demonstrate that relative to the condition in which the cue
and the target are presented to different eyes, earlier facilitation in the
same eye condition was found. This finding implicates the involvement
of monocularly segregated regions in endogenous orienting.

3. Experiment 2

The following experiment was designed to better understand the
time course of endogenous orienting, and to reveal the rise and fall of
the endogenous facilitation dynamics. This experiment is similar to the
first experiment, but used shorter set of SOAs. This was done in order to
obtain a finer resolution of the gradually developing facilitation. To do
so, we included a 500 ms SOA in order to replicate the results from the
first experiment while including two shorter SOAs not used in the first
experiment - 0 ms and an intermediate SOA of 300 ms.

Fig. 1. Schematic illustration of the experimental apparatus and visual pathways from the
eyes to the brain. Each side of the computer monitor provided visual information to a
different eye. From the eye, the visual information passes first through monocularly
segregated regions (dashed lines left eye, solid lines right eye). This information is then
projected to the lateral geniculate nucleus (LGN) and subsequently reaches striate and
binocular extrastriate regions.

1 In a separate analysis we examined the interaction between Eye-of-Origin and
Validity for the first SOA which resulted in a marginally significant effect [F (1, 31) =
3.79, MSE = 800, P = 0.06].
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3.1. Methods

With the following exceptions all of the methods were similar to
those used in Experiment 1. 31 participants (mean age 20.6; 23 fe-
males) volunteered to participate in exchange for payment or course
credit. All had normal or corrected-to-normal vision. The study was
approved by the ethics committee of the University of Haifa. The SOAs
used were 0 ms, 300 ms and 500 ms.

3.2. Results

Trials on which RT was longer than 2000 ms or shorter than 100 ms
were excluded from the analyses (less than 1%). Participants responded
during catch trials on less than 1% of the trials, and at less than 1% of
the trials in which target appeared the participants didn't respond.

For each Eye-of-Origin condition (Same, Different), an analysis of
variance (ANOVA) with SOA (0 ms, 300 ms or 500 ms), and Validity
(Valid, Invalid) as within-subject's factors was conducted with RT as the
dependent variable. Fig. 4 presents RT as a function of Eye-of-Origin,

SOA and Validity.
When the cue and target were presented to the same eye, the main

effect of SOA was significant [F (2, 60) = 88.49, MSE = 1717,
P< 0.001], indicating faster RT with increasing SOAs. The main effect
of Validity was significant [F (1, 30) = 9.35, MSE = 1385, P< 0.005],
indicating faster RT for Valid compared to Invalid trials. Although the
SOA × Validity interaction was not significant [F (2, 60) =1.8, NS] we
continued to analyze the two-way interaction by examining the Validity
effect for every SOA separately because no facilitation was predicted for
the shortest SOA (0 ms). In line with this prediction, no facilitation was
found in the 0 ms SOA condition [F (1, 30)< 1, NS]. In contrast, and in
agreement with Experiment 1, significant facilitation was observed in
the 300 ms and 500 ms SOA conditions [F (1, 30) = 7.5, MSE = 1092,
P< 0.05; F (1, 30) = 4.35, MSE = 2514, P< 0.05, for the 0 ms,
300 ms and 500 ms, for each SOA respectively].

When the cue and target were presented to different eyes, the main
effect of SOA was significant [F (2, 60) = 90.17, MSE = 1711,
P< 0.001], indicating faster RT with increasing SOAs. In contrast to
the same eye condition, the main effect of Validity was not significant

Fig. 2. Experiment in which a red cue predicts a target at the lower square while a green cue, predicts a target at the upper square. (A) A typical Valid, Same Eye condition trial in which
the cue (green square) is presented to the right eye (right column) and the target is presented to the right eye (right column), at the upper square. The middle column represents the
participant's fused perception. (B) A typical Valid, Different Eyes condition trial in which the cue (green square) is presented to the right eye (right column) and the target is presented to
the left eye (left column), at the upper square. The middle column represents the participant's fused perception. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 3. RT as a function of SOA, depicted for each Eye-of-Origin condition, with Valid and Invalid trials plotted separately. Error bars represent one standard error from the mean.
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[F (1, 30) = 1.63, NS]. Although the SOA × Validity interaction was
also not significant [F (2, 60) = 2.11, NS] we continued to analyze the
two-way interaction by examining the Validity effect for every SOA
separately because, in accordance with Experiment 1, facilitation was
predicted when the SOA was 500 ms. As expected, at SOA 0 ms no fa-
cilitation was found [F (1, 30) = 1.27, NS]. The Validity effect was also
not significant at the 300 ms SOA [F (1, 30) = 1.27, NS]. Replicating
the finding from Experiment 1, however, the validity effect was sig-
nificant when the SOA was 500 ms [F (1, 30) = 6.7, MSE = 718,
P<0.05].

4. General discussion

By employing a simple endogenous orienting detection task, we
tested whether the endogenous facilitation is modulated by the Eye-of-
Origin manipulation. To reveal the microgenesis of endogenous facil-
itation, Fig. 5 shows the aggregated results across the multiple SOAs

from the two experiments. The data demonstrates that the onset of
facilitation was modulated by the Eye-of-Origin manipulation. Facil-
itation was observed over the full range of non-zero SOAs tested (from
100 to 1000 ms) in the same eye condition. In striking contrast, in the
different eye condition facilitation was not significant until the 500 ms
SOA. An alternative way to describe this difference is that endogenous
orienting was observed at the 100 and 300 ms SOAs in the same eye
condition, whereas it was not observed at these SOAs in the different
eye condition. These findings provide converging evidence for the no-
tion that monocular portions of the visual stream have a functional role
in endogenous orienting.

4.1. Involvement of monocular versus binocular visual channels

As indicated in the introduction, similar to subcortical regions, V1
also has monocularly segregated neurons that might be responsible for
the differences between the two eye-of-origin conditions. V1, which

Fig. 4. RT as a function of SOA, depicted for each Eye-of-Origin condition, with Valid and Invalid trials plotted separately. Error bars represent one standard error from the mean.

Fig. 5. Data collectively assembled from the two experiments to reflect the attentional dynamics over time. The upper panels show RT in the Valid and Invalid conditions, and the lower
panels show the Validity effect (Invalid RT minus Valid RT). Ninety-five % confidence intervals are shown in the error bars. The RT and Validity effect, presented as a function of SOA and
depicted for each Eye-of-Origin condition.
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projects monosynaptically to the SC and thus provides a source of
cortical inputs to the SC, could play a role in guiding attention. Indeed,
recent experimental evidence supports the idea (Li, 2002) that V1
creates a bottom-up saliency map that plays a role in guiding attention
exogenously (Zhaoping, 2008). As Zhaoping suggests, if V1, through its
SC connections, is involved in exogenous attention, it is possible that
the same low-level neuronal mechanisms also guide endogenous or-
ienting of attention.

In a recent fMRI/ERP study, Zhang et al. (2012b) demonstrated that
when observers are unable to perceive a cue that nevertheless generates
exogenous orienting, it is V1, rather than the parietal and frontal areas,
that is activated by the cue. This finding allows for the possibility that
the typical activation of fronto-parietal regions by exogenous cues
(which are usually perceptible) does not reflect a functional role of
these areas in generating the orienting, but rather is associated with
awareness of the cue. It is possible that the same logic can explain the
results from previous endogenous orienting studies.

Nevertheless, and in line with most literature, these - low level
structures - may be necessary but not sufficient, to elicit endogenous
orienting. Since the visual system has many feedback connections
(Bullier, 2001; Lamme et al., 1998), dynamic interactions between
cortical and lower monocular regions might be involved in the process
of endogenous orienting. The delayed facilitation in the different eye
condition might result from the involvement of such feedback con-
nections.

Our findings have also implications for recent general theories of
attention, such as the biased competition or the normalization models
of attention. The finding that the facilitation effect appears earlier at
monocular channels (vs. binocular channels) can be explained by the
normalization model of attention (Reynolds and Heeger, 2009), that
was initially suggested as a way of implementing biased competition
(Desimone and Duncan, 1995). It should be noted that in order to fit
with our findings, the attention field and stimulation field multi-
plication (which results in the behavioral benefit for attended loca-
tions), should be accomplished earlier at monocular portions of the
visual system. This is in accordance with Motter (1993) who recorded
neuronal responses in macaque areas V1, V2, and V4 to stimuli that
varied in orientation, and demonstrated that directing attention to the
stimulus in the receptive field often increased neuronal firing rates.

Note, several previous studies have examined the involvement of V1
in general attention processes, such as selective and contextual effects
of attention (e.g., Buffalo et al., 2010; Ito and Gilbert, 1999; Lakatos
et al., 2008; Motter, 1993; O’Connor et al., 2002; Roelfsema et al.,
1998). Overall, as far as we know, no previous study has examined the
involvement of lower neural systems in endogenous attentional or-
ienting, using the well-studied Posner cuing task. The distinction be-
tween different attentional systems is highly important for the under-
standing of attention. Each system has its unique behavioral effects and
neural substrates (see Klein and Lawrence, 2012; Posner and Petersen,
1990; Petersen and Posner, 2012, for a detailed taxonomy of attention),
and hence, from the study of one attentional system one should not
draw conclusions about the cognitive and neural structures involved in
another attentional system. In addition, most of the aforementioned
studies have only demonstrated a correlation between V1 and atten-
tional processes, whereas our study suggests a causal relation.

4.2. Some evolutionary speculations

As mentioned above, in contrast to the general agreement from
behavioral studies, that the exogenous and endogenous systems act
independently, most imaging studies suggest that the two systems
share, at least partially, similar neurophysiological substrates
(Andersen et al., 1997; Kincade et al., 2005; Peelen et al., 2004; Rosen
et al., 1999; Voytko et al., 1994; Yantis et al., 2002). Zhaoping (2016)
has suggested that reflexive cuing effects observed in humans should
also be present in lower vertebrates. Accordingly, it was previously

demonstrated that the archerfish, which possesses an optic tectum, but
lacks fully developed cortical structures, demonstrated attentional re-
flexive abilities similar to those observed in human participants (Gabay
et al., 2013). Zhaoping has also suggested that in primates, V1 creates a
saliency map of the visual world. In lower vertebrates, such as fish, V1
is absent and the SC (the optic tectum in fish) receives most of the
retinal input. Hence, it is possible that through evolution this saliency
map of the visual world migrated from the optic tectum to V1
(Zhaoping, 2016). The current study indicates that, similarly to exo-
genous attentional orienting (Gabay and Behrmann, 2014), monocular
channels are involved in endogenous orienting in humans. Therefore, it
is plausible that both modes of orienting (exogenous and endogenous)
are guided by a saliency map in V1 or in lower visual areas.

It is possible that during evolutionary development, higher neural
substrates took control over lower mechanisms in order to manifest
volitional attentional abilities. This assumption is in accordance with
many recent theories suggesting that neural circuitry can be recycled
and tuned for different purposes either phylo - or ontogenetically
(Anderson, 2007a, 2007b, 2010; Dehaene, 2005; Dehaene and Cohen,
2007; Gallese, 2008; Gallese and Lakoff, 2005; Hurley, 2008). Thus,
brain organization is subject to strong anatomical and connectional
constraints inherited from evolution. New abilities (e.g., endogenous
orienting) find their ‘‘neuronal niche’’, a set of circuits that are suffi-
ciently close to the required function, and sufficiently flexible as to
reorient a significant fraction of their neural resources to this novel use.
As evolutionarily older function is invaded by a novel one, its prior
organization is never entirely erased. Thus, prior neural constraints
exert a powerful influence on brain organization (Dehaene, 2005).
Accordingly, neural circuits which were once established for one pur-
pose (e.g., detect sudden changes in the environment – exogenous or-
ienting) can be exploited during the evolutionary development for
other uses (e.g., orient attention volitionally on the basis of predictions
and expectations – endogenous orienting).
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